Targeting Endoglin to Treat Metastatic Renal Cell Carcinoma: Lessons from Osler-Weber-Rendu Syndrome

Andrew W. Hahn, Sumanta K. Pal, Neeraj Agarwal

Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California, USA
Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; ANDREW W. HAHN, SUMANTA K. PAL, NEERAJ AGARWAL

Lessons from Osler-Weber-Rendu Syndrome

Targeting Endoglin to Treat Metastatic Renal Cell Carcinoma: Lessons from Osler-Weber-Rendu Syndrome

Renal cell carcinoma (RCC) is one of the 10 most commonly diagnosed cancers in the U.S., and approximately 30% of patients with newly diagnosed RCC present with locally advanced or metastatic disease [1, 2]. Although metastatic RCC (mRCC) carries a poor prognosis, the treatment landscape for mRCC is evolving at a staggering pace due to improved understanding of the pathogenic mechanisms underlying mRCC [3]. Somatic mutations to VHL are seen in the majority of patients with clear cell mRCC. These mutations prevent ubiquitination of hypoxia-inducible factor (HIF), which causes an accumulation of intracellular HIF and production of growth factors that facilitate angiogenesis, glycosylation, and tumorogenesis [4]. Subsequently, vascular endothelial growth factor (VEGF)-targeted therapies were developed and improved survival for patients with mRCC. However, most patients treated with VEGF-targeted therapy will eventually have disease progression. A number of other angiogenesis pathways have been identified as possible resistance mechanisms to VEGF targeted therapy, including interleukin-6 (IL-6), transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), c-MET, and angiopoietin. With this knowledge, a multitarget tyrosine kinase inhibitor (TKI), cabozantinib, was developed to target VEGF and c-MET, and it improved survival compared to treatment with sunitinib, a VEGF only TKI [5].

TRC105 (carotuximab) is a novel therapeutic that bears relationship to the underlying pathophysiology of Osler-Weber-Rendu syndrome, which is also referred to as hereditary hemorrhagic telangiectasia-1 (HHT-1). In HHT-1, mutations to ENG result in defective endoglin. Endoglin (CD105) is a homodimeric TGF-β coreceptor that is upregulated by HIF-1-α and is essential for normal vascular development [6–8]. Interestingly, patients with Osler-Weber-Rendu have improved survival across a number of cancers, likely due to defects in angiogenesis. TRC105 is a chimeric IgG1 monoclonal antibody that binds to endoglin, competitively inhibits bone morphogenetic protein ligand binding required for endothelial signal transduction, induces antibody-dependent cellular cytotoxicity of vascular endothelial cells and endoglin-expressing tumor cells, and inhibits angiogenesis (Fig. 1) [9]. TRC105’s ability to target angiogenesis through the TGF-β pathway suggests that it could cooperate with a VEGF-targeted therapy to improve outcomes for patients with mRCC (Fig. 1).

In the accompanying phase I clinical trial, Choueiri and colleagues clearly demonstrate that TRC105 can safely be combined with axitinib in patients with mRCC [10]. Nineteen patients with heavily pretreated mRCC who progressed following treatment with at least one VEGF-targeted therapy were included. Patients received a median of three prior systemic therapies (range, one to six). In this cohort, TRC105 plus axitinib did not cause any dose-limiting toxicities or increase the toxicity profiles of the individual drugs. Grade 3 toxicities attributed to TRC105 included anemia requiring blood transfusions and headache after the initial dose. Furthermore, TRC105 plus axitinib demonstrated promising efficacy in this small cohort of mRCC patients. In this cohort treated with TRC105 plus axitinib, median progression-free survival (mPFS) was 11.3 months, objective response rate was 29.4% (5/17), and disease control rate was 88.2% (15/17). With the caveats of cross-trial comparison, the mPFS of 11.3 months with TRC105 plus axitinib was an improvement compared with the original AXIS trial in which axitinib as monotherapy had a mPFS of 8.3 months [11]. Notably, in the AXIS trial, mRCC patients were allowed to receive only one prior systemic therapy, and the mPFS with axitinib in those with prior exposure to a VEGF TKI was 6.5 months.

With a good safety profile and encouraging efficacy data, TRC105 plus axitinib warrants further investigation as salvage therapy for patients with mRCC, and enrollment in a phase II registration trial is already complete (NCT01806064). However, these findings should be considered in the context of previous studies with TRC105 and another angiogenesis pathway inhibitor, dalantercept. TRC105 was initially combined with bevacizumab in a randomized phase II clinical trial of 59 patients with previously treated mRCC [12]. In that study, TRC105 plus bevacizumab did not improve mPFS compared to bevacizumab alone (2.8 vs. 4.6 months, p = .09). Dalantercept is

Correspondence: Neeraj Agarwal, M.D., Genitourinary Oncology Program, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive Suite 5726, Salt Lake City, Utah 84112, USA. Telephone: 801-213-5658; e-mail: neeraj.agarwal@hci.utah.edu Received July 23, 2018; accepted for publication July 24, 2018. http://dx.doi.org/10.1634/theoncologist.2018-0443

The Oncologist 2018;00:1–3 www.TheOncologist.com © AlphaMed Press 2018

Published Ahead of Print on August 23, 2018 as 10.1634/theoncologist.2018-0443.
an activin receptor-like kinase 1 (ALK1) fusion protein
that acts as a ligand trap for bone morphogenic proteins
9 and 10, which is similar to the pathophysiology behind
hereditary hemorrhagic telangiectasia-2. For dalanter-
cept, the phase I clinical trial showed promising safety
and efficacy data in previously treated mRCC; however,
the phase II clinical trial revealed that dalantercept plus
axitinib did not improve mPFS compared with axitinib
plus placebo (6.8 months vs. 5.6 months; hazard ratio,
1.10; \(p = 0.67 \)) [13]. With the benefit of hindsight, both
studies have significant limitations that may have contrib-
uted to their negative results. In the TRC105 plus bevaci-
zumab trial, bevacizumab is not a standard salvage-line
treatment for mRCC, and endoglin levels unexpectedly
declined after monotherapy with bevacizumab. For
dalantercept, the physical manifestations of HHT were
only seen in a minority of patients, suggesting an appro-
priate physiologic dose was not achieved.

If the phase II registration trial of TRC105 plus axitinib
is positive, oncologists will have a novel therapeutic class
in their armamentarium for mRCC, yet it also raises the
question of where TRC105 plus axitinib will
fit in the increasingly crowded treatment landscape for mRCC. Cur-
cently, the options for salvage treatment of mRCC include
cabozantinib, nivolumab, lenvatinib plus everolimus, and
axitinib monotherapy. Without question, TRC105 plus axiti-
nib could be utilized as an additional salvage treatment for
mRCC. Currently, TRC105 plus axitinib is not being investi-
gated as a first-line treatment for mRCC. Newer regimens
or agents, such as nivolumab plus ipilimumab and cabozan-
tinib, have become standard of care first-line treatment for
most mRCC patients, and the combination of bevacizumab
plus atezolizumab may be approved soon. Furthermore,
novel combination regimens, such as pembrolizumab plus
axitinib and avelumab plus axitinib, have shown promise
for mRCC in early phase trials and are under investigation
in phase III registration clinical trials (Table 1) [14, 15]. If

Table 1. Phase III clinical trials of novel combination regimens for first-line therapy for metastatic renal cell carcinoma

| ID | Phase | Arms | Primary outcome | Patients, \(n \) | Estimated primary completion date
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT03141177</td>
<td>3</td>
<td>Cabozantinib + nivolumab vs. sunitinib</td>
<td>PFS</td>
<td>630</td>
<td>September 2019</td>
</tr>
<tr>
<td>NCT02853331</td>
<td>3</td>
<td>Pembrolizumab + axitinib vs. sunitinib</td>
<td>PFS, OS</td>
<td>840</td>
<td>December 2019</td>
</tr>
<tr>
<td>NCT02811861</td>
<td>3</td>
<td>Lenvatinib + everolimus vs. lenvatinib + pembrolizumab vs. sunitinib</td>
<td>PFS</td>
<td>735</td>
<td>January 2020</td>
</tr>
<tr>
<td>NCT02684006</td>
<td>3</td>
<td>Avelumab + axitinib vs. sunitinib</td>
<td>PFS</td>
<td>583</td>
<td>December 2018</td>
</tr>
</tbody>
</table>

*Primary completion date: The date on which the last participant in the clinical study was examined or received an intervention to collect final data for the primary outcome measure.
Abbreviations: OS, overall survival; PFS, progression-free survival.
the phase II registration trial of TRC105 plus axitinib leads to approval of this combination in the salvage therapy setting, could clinical trials evaluating first-line triplet therapy with a checkpoint inhibitor plus axitinib plus TRC105 be initiated in the near future?

In conclusion, TRC105 targets endoglin, a non-VEGF angiogenesis pathway that has the potential to complement VEGF targeted therapy. In the accompanying phase I trial, Choueiri and colleagues demonstrate that TRC105 plus axitinib is safe and has promising therapeutic activity in patients with mRCC. Due to the mixed history with targeting VEGF and alternative angiogenesis pathways, the jury will remain out on TRC105 plus axitinib until the phase II registration trial is reported.

REFERENCES

ACKNOWLEDGMENTS

The authors acknowledge Roberto H. Nussenzveig for help with figure preparation.

DISCLOSURES

Sumanta K Pal: Genentech, Aveo, Eisai, Roche, Pfizer, Novartis, Ipsen, Bristol-Myers Squibb, Astellas Pharma (C/A); Neeraj Agarwal: Pfizer, Novartis, Merck, Genentech, Eisai, Exelixis, Clovis Oncology, EMD Serono, Inc., Bristol-Myers Squibb, AstraZeneca, Astellas Pharma, Eli Lilly and Co. (C/A). The other author indicated no financial relationships.

(C/A) Consulting/advisory relationship; (RF) Research funding; (E) Employment; (ET) Expert testimony; (H) Honoraria received; (OI) Ownership interests; (IP) Intellectual property rights/inventor/patent holder; (SAB) Scientific advisory board.